Litchi seed extracts diminish prostate cancer progression via induction of apoptosis and attenuation of EMT through Akt/GSK-3β signaling
نویسندگان
چکیده
Litchi (Litchi chinensisSonnnerat, Sapindaceae), known as Chinese Cherry, is a subtropical fruit tree originating from southern China. Litchi seed extracts have diverse pharmacological effects, including anticancer. However, its anticancer effects and mechanisms on prostate cancer have not been determined. In this study, we used n-butyl alcohol extract of Litchi seed (NLS) to treat prostate cancer PC3, DU145, RM1 and C4-2B cells. NLS induced a significant decrease in cell viability and clonogenic growth in a dose-dependent manner. NLS induced cell apoptosis and cell cycle G1/S phase arrest by inactivating Akt signaling pathway, which were associated with activation of mitochondrial caspase-dependent apoptotic cascades, up-regulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27, and inhibition of correlated cyclin/CDK network. In addition, NLS treatment significantly decreased cell migration and invasion via phenotypic inversion of EMT, correlated with increased expression of E-cadherin and β-catenin, and decreased expression of vimentin and snail, which is partially attributed to inhibiting Akt/GSK-3β signaling pathway. Finally, PC3 xenograft nude mice treated with NLS in vivo showed a significant decrease in tumor size without toxicity. These findings suggest that NLS has potential for development into a safe and potent alternative therapy for prostate cancer patients.
منابع مشابه
c-Met, CREB1 and EGFR are involved in miR-493-5p inhibition of EMT via AKT/GSK-3β/Snail signaling in prostate cancer
miR-493-5p downregulation has emerged as a critical player in cancer progression yet, the underlying mechanisms of miR-493-5p expression pattern and its function in prostate cancer remains to be elucidated. Here, we illustrate that miR-493-5p is frequently downregulated in prostate cancer, at least partially due to altered DNA methylation. miR-493-5p functions as a tumor suppressor in prostate ...
متن کاملTwist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells
Colorectal cancer (CRC) with microsatellite instability (MSI) may exhibit impaired epithelial-mesenchymal transition (EMT), but little is known about the underlying mechanisms of this phenomenon. In this study, we investigated the role of Twist1 and its downstream signaling cascades in EMT induction according to MSI status. To investigate the effects of Twist1 on EMT induction according to MSI ...
متن کاملInsulin-like growth factor-I induces epithelial to mesenchymal transition via GSK-3β and ZEB2 in the BGC-823 gastric cancer cell line
Metastasis is the most common cause of mortality in patients with gastric cancer. Epithelial-to-mesenchymal transition (EMT), which may be stimulated by insulin-like growth factor-I (IGF-I) is involved in the metastasis of numerous tumors; however, the molecular mechanism by which IGF-I may induce tumor cell EMT remains to be elucidated in gastric cancer. The present study aimed to investigate ...
متن کاملEmbelin-Induced Apoptosis of Human Prostate Cancer Cells Is Mediated through Modulation of Akt and β-Catenin Signaling
There is increasing evidence that embelin, an active component of Embelia ribes, induces apoptosis in human cancer cells, but the detailed mechanisms are still unclear. Here, we have investigated the effect of embelin on the growth of human prostate cancer cells. Embelin strongly inhibited cell growth especially in human prostate cancer cell lines, including PC3, DU145, LNCaP-LN3 and normal pro...
متن کاملKPNA2 promotes migration and invasion in epithelial ovarian cancer cells by inducing epithelial-mesenchymal transition via Akt/GSK-3β/Snail activation
Background: Increased karyopherin alpha 2 (KPNA2) expression has been demonstrated in epithelial ovarian carcinoma (EOC) tissue. However, its role in the disease is not clear. Here, we investigate the mechanism of involvement of KPNA2 in EOC. Methods: Stable cell lines expressing KPNA2, or KPNA2 shRNAs, were constructed. The effects of KPNA2 overexpression and knockdown on EOC cell migration, i...
متن کامل